Industry News: Oxford Instruments NanoScience partners on three Innovate UK projects to enable the next generation of quantum computers

The partnerships hope to resolve the challenges to scale up and commercialization, enabling the implementation of quantum computing to real-world applications

05 Nov 2021

Oxford Instruments NanoScience has announced its partnership in three major projects funded through Innovate UK’s ‘Commercializing Quantum Technologies’ category with industry-leading organizations SEEQC, Quantum Motion and sureCore. These partnerships affirm Oxford Instruments NanoScience as the partner of choice for cryogenic platforms for quantum scale-up on the road to building the next generation of quantum computers.

Oxford Instruments NanoScience has partnered with SEEQC on its Industrial Strategy Challenge Fund (ISCF) QuPharma project with £6.8M funding to build a commercially scalable application-specific quantum computer for science and technology company, Merck KGaA in Darmstadt, Germany. By supplying its cryogenic engineering expertise and a custom cryostat with unique capabilities, SEEQC will be able to manufacture a quantum computer platform for Merck KGaA to help them make advancements in the research and development of next-generation pharmaceutical therapies and performance materials.

Second, Oxford Instruments NanoScience has partnered with Quantum Motion in a £5.7M funded project called ‘Altnaharra’, based on the development of quantum computing technology using superconducting circuits, ion traps, and spin qubits. The project’s focus is developing cryoelectronics for quantum circuits and will target the development of cryogenic chips for integrated qubit control and readout, manufactured in a standard complementary metal-oxide-semiconductor (CMOS) foundry.

Third, Oxford Instruments NanoScience has a £6.5M funded project led by sureCore that focuses on the development of cryo-CMOS electronics and will allow for the development of the memory and control architecture for local control and measurement of qubits. This is to simplify architecture and reduce the number of wires for the quantum information processor - factors that are limiting the scalability of future quantum devices, along with reducing the cost of current qubit control. The consortium will create process design kits necessary to facilitate the design of silicon-based CMOS circuits optimized for quantum computing applications and operating at cryogenic temperatures, while manufactured using conventional foundries. Oxford Instruments NanoScience will support the endeavor by supplying cryogenics design expertise to facilitate cryo-CMOS solutions for new design rules.

“We are pleased to be a direct partner in three major Innovate UK projects to bring the commercialization of quantum computing closer for meaningful enterprise applications,” says Matthew Martin, Director of Engineering at Oxford Instruments NanoScience. “With our proven history of delivering complex technology, we are able to partner with leading organizations to accelerate research and discovery in vital industries such as pharmaceuticals. We look forward to working with Quantum Motion, sureCore and SEEQC and will also continue to grow our international partnerships to deliver our technology roadmap. Collectively, the aggregation of world-leading skills will resolve the challenges to scale up and commercialization, delivering the implementation of quantum computing to real-world applications for life-changing outcomes.”

Want the latest science news straight to your inbox? Become a SelectScience member for free today>>